Mechanobiology describes the relationship between a cell and its environment; how a cell can detect, measure and respond to the rigidity of its substrate and how these processes apply to larger biological systems. As the field of mechanobiology developed, several common themes applicable to various cell types and biological systems were described.
Cells Modulate their Stiffness According to their Substrate

Models for force-induced modulation of cytoskeletal stiffness. (A) Tensegrity model: Top left- A simplified version with compression struts and tensed cables exemplifying that stress levels regulate cytoskeletal rigidity. Top right- In the cellular context, microtubules (gold rod) apply compression on cell-matrix adhesions (represented by actin linking modules in pink and integrin dimers) while the actin filaments (red) experience the cellular tension and hence stiffen accordingly. (B) Semiflexible chain model is represented by the flexible actin cables (red) that locally rigidify at points of stress application i.e. myosin (blue bundle) contraction. (C) Dipole polarization model: Formation of contractile actomyosin dipoles is symbolically represented by the arrow pairs. According to this model, they freely orient in response to applied stress as experienced at a particular point. Adapted from Stamenovic D. & Ingber DE. Tensegrity-guided self assembly: from molecules to living cells. Soft Matter 2009; 5:1137–45. [DOI: 10.1039/B903916N] and [PMID 20816234].
i) Tensegrity: This model states that pre-existing tension within the architecture of both the cytoskeleton and the extracellular matrix (ECM) determines cytoskeletal rigidity upon the application of load (stress), such that stress is proportional to rigidity. This model assumes the cytoskeleton acts as a network of tensed cables interspersed by soft cellular material [2],[3],[4]. These cables tense and pull in response to an applied force in order to regain cellular stability.
ii) Semiflexible chain: On the assumption that actomyosin filaments are distributed uniformly throughout the cell, this model states that the filaments are non-linearly elastic (similar to cytosol) and stiffen under stress. Hence, actomyosin filaments can be defined as semi-flexible structures, which are suggested to respond to force isotropically i.e. uniformly throughout their structure irrespective of the directionality of the force applied [5],[6],[7].
iii) Dipole polarization: On the assumption that actomyosin filaments are distributed uniformly throughout the cell, this model states that upon the application of force, the elastic filaments form dipoles. These dipoles propogate force through the cytoskeletal network through polarization and subsequent pulling on the filaments in direction-dependent manner. Hence, actomyosin filaments are suggested to respond to force anisotropically i.e. differentially throughout their structure dependent on the direction of the force applied [7],[8],[9].
- How are forces transduced in a cellular environment?
- How is energy transferred across the cellular system?
- Is mechanosensing an active process?
- What types of forces do cells encounter?
- How does the cytoskeleton transmit mechanical forces?
- How do focal adhesions facilitate mechanosensing?
- How do focal adhesions sense the physical properties of the matrix?
- Can somatic cells be reprogrammed into pluripotent stem cells using mechanical cues alone?steve2018-06-04T17:04:27+08:30
Can somatic cells be reprogrammed into pluripotent stem cells using mechanical cues alone?
- How is polarity established by cellular forces?Sruthi Jagannathan2018-06-13T14:59:32+08:30
How is polarity established by cellular forces?
- How do forces affect actin remodeling at distant locations in a cell?Sruthi Jagannathan2018-05-31T14:00:32+08:30
How do forces affect actin remodeling at distant locations in a cell?
- How does talin buffer forces in cells?Sruthi Jagannathan2018-06-04T10:17:25+08:30
How does talin buffer forces in cells?
- How are apoptotic cells removed from the epithelial tissue in Drosophila pupae?Sruthi Jagannathan2018-04-16T14:41:11+08:30
How are apoptotic cells removed from the epithelial tissue in Drosophila pupae?
- How does cell geometry induce TNFα-induced genome response?Sruthi Jagannathan2018-03-23T17:51:41+08:30
How does cell geometry induce TNFα-induced genome response?
- What is the role of non-junctional E-cadherin clusters?Sruthi Jagannathan2018-03-12T12:57:36+08:30
What is the role of non-junctional E-cadherin clusters?
- How do nuclear phosphoinositides mediate DNA damage repair?Sruthi Jagannathan2018-03-01T14:51:15+08:30
How do nuclear phosphoinositides mediate DNA damage repair?
- How do H-NS proteins bind bacterial DNA?Sruthi Jagannathan2018-03-01T21:24:41+08:30
How do H-NS proteins bind bacterial DNA?
- How do geometric constraints alter cell shape and rearrangement in curved epithelial tissues?Sruthi Jagannathan2018-03-01T12:45:29+08:30
How do geometric constraints alter cell shape and rearrangement in curved epithelial tissues?
References
- Tee S, Bausch AR, and Janmey PA. The mechanical cell. Curr. Biol. 2009; 19(17):R745-8. [PMID: 19906576]
- Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell. Sci. 1993; 104 ( Pt 3):613-27. [PMID: 8314865]
- Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell. Sci. 2003; 116(Pt 7):1157-73. [PMID: 12615960]
- Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 2009; 38:301-26. [PMID: 19416071]
- Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, and Weitz DA. Elastic behavior of cross-linked and bundled actin networks. Science 2004; 304(5675):1301-5. [PMID: 15166374]
- Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, and Janmey PA. Nonlinear elasticity in biological gels. Nature 2005; 435(7039):191-4. [PMID: 15889088]
- Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, and Weitz DA. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 2009; 106(36):15192-7. [PMID: 19667200]
- Zemel A, Bischofs IB, and Safran SA. Active elasticity of gels with contractile cells. Phys. Rev. Lett. 2006; 97(12):128103. [PMID: 17026002]
- Zemel A, Rehfeldt F, Brown AEX, Discher DE, and Safran SA. Cell shape, spreading symmetry and the polarization of stress-fibers in cells. J Phys Condens Matter 2010; 22(19):194110. [PMID: 20458358]